Transversity GPDs in the Large- N_c limit

Kemal Tezgin

University of Connecticut kemal.tezgin@uconn.edu

joint work with Peter Schweitzer and Christian Weiss

June 4, 2018

1 / 19

Chiral-odd GPDs

Accessible through exclusive meson production processes

ullet There are four chiral-odd GPDs $H_T, \tilde{H}_T, E_T, \tilde{E}_T$ at leading twist

$$\begin{split} \frac{1}{2} \int \frac{dz^-}{2\pi} \, e^{ixP^+z^-} \langle p', \lambda' | \, \bar{\psi}(-\tfrac{1}{2}z) \, i\sigma^{+i} \, \psi(\tfrac{1}{2}z) \, \left| p, \lambda \rangle \right|_{z^+=0,\, \mathbf{z}_T=0} \\ &= \, \frac{1}{2P^+} \bar{u}(p',\lambda') \left[H_T^q \, i\sigma^{+i} + \tilde{H}_T^q \, \frac{P^+\Delta^i - \Delta^+P^i}{m^2} \right. \\ &+ E_T^q \, \frac{\gamma^+\Delta^i - \Delta^+\gamma^i}{2m} + \tilde{E}_T^q \, \frac{\gamma^+P^i - P^+\gamma^i}{m} \right] u(p,\lambda). \end{split}$$

where i = 1, 2 is the transversity index [Diehl '03]

Properties of chiral-odd GPDs

- In the forward limit $\Delta \to 0$, H_T reduces to transversity PDF; $H_T(x,0,0) \to h_1(x)$
- It follows from the time reversal invariance that the GPDs H_T, \tilde{H}_T, E_T are invariant under the transformation $\xi \to -\xi$. Whereas \tilde{E}_T is subject to sign change, i.e.

$$GPD(x, \xi, t) = GPD(x, -\xi, t)$$
 for $GPD = H_T, \tilde{H}_T, E_T$
 $GPD(x, \xi, t) = -GPD(x, -\xi, t)$ for $GPD = \tilde{E}_T$

 First moments of the chiral-odd GPDs are the nucleon's tensor form factors, i.e.

$$\int_{-1}^{1} \left\{ H_T, \tilde{H}_T, E_T \right\} (x, \xi, t) dx = H_T(t), \tilde{H}_T(t), E_T(t)$$
$$\int_{-1}^{1} \left\{ \tilde{E}_T \right\} (x, \xi, t) dx = 0$$

Bag Model

- Quarks are constrained inside of a finite size "bag"
- Quarks are free inside the bag (Asymptotic freedom), however are subject to sharp boundary conditions on the surface to implement the confinement.
- Evaluate the correlators by using this model in order to calculate chiral-odd GPDs.
- Bag model has been used to obtain the first estimations for chiral-even GPDs [Ji, Melnitchouk, Song '97]

Chiral-odd GPDs in Bag Model

The momentum space wave function in the bag is given by

$$\varphi(\vec{k}) = \sqrt{4\pi} NR^3 \begin{pmatrix} t_0(k)\chi_m \\ \vec{\sigma} \cdot \hat{k} & t_1(k)\chi_m \end{pmatrix}$$

where

$$t_0(k) = \frac{j_0(w_0)\cos(kR) - j_0(kR)\cos(w_0)}{w_0^2 - \vec{k}^2R^2}$$
$$t_1(k) = \frac{j_0(kR)j_1(w_0)kR - j_0(w_0)j_1(kR)w_0}{w_0^2 - \vec{k}^2R^2}$$

 Use this wave function to evaluate the correlators on the left hand side;

$$\varphi^{\dagger}(k')S(\Lambda_{-\vec{v}})\gamma^{0}\Gamma S(\Lambda_{\vec{v}})\varphi(k)$$

where $\Gamma=i\sigma^{+i}$ and $S(\Lambda_{ec{v}})$ is the Lorentz boost transformation

• We have 2 equation (for i = 1, 2) and 4 unknowns; project on different spin components to obtain 4 equations with 4 unknowns

Chiral-odd GPDs in Bag Model

• Chiral-odd GPDs in Bag Model at $\xi = 0.1, t = -0.3 \, GeV^2$

Large- N_c expansion

- Usually once we can not solve a problem analytically, we tend to use perturbation theory; anharmonic oscillator in QM, ϕ^4 theory in QFT, ect.
- In QCD, however, the coupling constant g is high at low energies. Hence is not a good expansion parameter.
- The only known expansion parameter valid in all regions in QCD is $1/N_c$ obtained by generalizing the color gauge group $SU(3) \rightarrow SU(N_c)$ [t'Hooft '74]
- As $N_c \to \infty$, QCD simplifies significantly and can be approached nonperturbatively; with an expansion parameter $1/N_c$

Large- N_c expansion

- In this picture, baryons appear as solitons in the background of weakly interacting mesons [Witten '79]
- Large- N_c results can be checked in various ways: Diagrammatic techniques, chiral soliton model, Large- N_c quark model
- Large- N_c expansion connects QCD with chiral soliton model and quark model
- This is due to spin-flavor structure of the nucleon at Large- N_c of QCD has the same group structure with chiral soliton model and quark model at Large- N_c
- We use Bag Model as a tool to investigate model independent $(N_c$ -scaling) results of GPDs in the Large- N_c framework

ullet In Large- N_c limit, we have the following scaling of parameters

$$M_N \sim N_c$$
 $x \sim N_c^{-1}$
 $\xi \sim N_c^{-1}$
 $t \sim N_c^0$

ullet In the Large- N_c framework, a GPD G is asymptotically equivalent to a product

$$G(x,\xi,t) \sim N_c^k \times F(N_c x, N_c \xi, t)$$

where $k \in \mathbb{Z}_+$ and F is the limiting function which arise in the limit of $N_c \to \infty$.

 Here k depends on the GPD in question and the function F depends on the dynamical model used

 Then, by using the results obtained in Bag Model, we have the following scaling properties of chiral-odd GPDs

$$H_T^q \sim N_c^2$$
 $E_T^q \sim N_c^4$
 $\tilde{H}_T^q \sim N_c^4$
 $\tilde{E}_T^q \sim N_c^3$. (1)

• Here we note that among chiral-odd GPDs there is a special linear combination $\bar{E}_T^q = E_T^q + 2\tilde{H}_T^q$ which shows a cancellation of leading order scalings in the Large- N_c expansion

$$\bar{E}^q \sim N_c^3$$
.

Figure: N_c -scaling of the chiral-odd GPD H_T^u as a function of $\frac{xN_c}{3}$ fixed at $\xi = 0.1 \times \frac{3}{N_c}$ and $t = -0.3 GeV^2$.

Figure: N_c -scaling of the chiral-odd GPD E_T^u as a function of $\frac{xN_c}{3}$ fixed at $\xi = 0.1 \times \frac{3}{N_c}$ and $t = -0.3 \, GeV^2$.

Figure: N_c -scaling of the chiral-odd GPD \tilde{H}_T^u as a function of $\frac{xN_c}{3}$ fixed at $\xi = 0.1 \times \frac{3}{N_c}$ and $t = -0.3 \, GeV^2$.

Figure: N_c -scaling of the chiral-odd GPD \tilde{E}_T^u as a function of $\frac{xN_c}{3}$ fixed at $\xi=0.1 imes\frac{3}{N_c}$ and $t=-0.3\,GeV^2$.

Figure: N_c -scaling of the chiral-odd GPD \bar{E}_T^u as a function of $\frac{xN_c}{3}$ fixed at $\xi = 0.1 \times \frac{3}{N_c}$ and $t = -0.3 \, GeV^2$.

• On the other hand, dominant isospin combinations of chiral-odd GPDs in the Large- N_c limit appear as

$$H_T^{u-d}(x,\xi,t) \sim N_c^2$$

$$E_T^{u+d}(x,\xi,t) \sim N_c^4$$

$$\tilde{H}_T^{u+d}(x,\xi,t) \sim N_c^4$$

$$\tilde{E}_T^{u-d}(x,\xi,t) \sim N_c^3$$

$$\bar{E}_T^{u+d}(x,\xi,t) \sim N_c^3.$$
(2)

- Whereas, opposite isospin combinations are suppressed by order one
- The N_c scaling behaviors of chiral-odd GPDs \bar{E}_T, H_T and \tilde{E}_T were discussed by [Schweitzer, Weiss '16] using a solitonic field with known symmetry properties. The results are confirmed in the bag model

Phenomenological implications

- What are the phenomenological implications of our findings?
- Since we have Large- N_c relations among flavor-singlet and flavor-nonsinglet components of GPDs, this order among them predicts the relative sign of flavor decomposed GPDs
- For instance, dominance of flavor-nonsinglet (u-d) component of the GPD H_T in the Large- N_c limit implies a sign difference in the flavor decomposition of H_T
- Similarly for \bar{E}_T , flavor-singlet (u+d) component is dominant in the Large- N_c limit. This implies that the flavor decomposition is expected to have the same sign

Phenomenological implications

• Preliminary π^0 , η electroproduction data at JLab confirms our predictions for H_T and \bar{E}_T

Figure: Preliminary [Kubarovsky '15], talk given at EMP and Short Range Hadron Structure. $Q^2=1.8 GeV^2$

where $< H_T >$, $< \bar{E}_T >$ denotes the weighted integral of the GPD over x.

Conclusions

- Chiral-odd GPDs at leading twist are evaluated in the MIT Bag Model
- The model satisfies important properties: like polynomiality, the sum rule $\int dx \tilde{E}_T^q(x,\xi,t) = 0$ (not all models satisfy it)
- ullet In the Large- N_c limit, scaling properties of GPDs analyzed
- Flavor structure dictated by quark model SU(4)-spin flavor symmetry is in qualitative agreement with JLab data